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COMPARISON OF BOOSTING AND RANDOM FOREST 
MODELS IN FORECASTING BANK FAILURES

Revisiting the 2008 Financial Crisis from a Supervisory Perspective

Safa Sen1

ABSTRACT
This research paper delivers an exhaustive analysis of predictive models for bank 
failures, a subject of paramount importance for economic stability. Using a data-
set from the Federal Deposit Insurance Corporation (FDIC), the study examines 
950 banking institutions, including 60 that succumbed to the 2008 financial cri-
sis. The paper employs binary classification analysis using 26 CAMEL ratios and 
compares boosting algorithms with the Random Forest model family. In classify-
ing non-failed banks, Random Forest variations notably outperform boosting al-
gorithms, achieving a 97% accuracy rate in correctly classified instances, with the 
Regularized Random Forest model showing exceptional precision with a rate of 
0.988. In the context of predicting failed banks, the Random Forest models, par-
ticularly the regularized variant, demonstrate a strong capability for accurately 
identifying true failures. These findings corroborate the efficacy of Random For-
est models in predicting bank failures precisely and reliably, highlighting their 
critical role in reducing false positives and negatives, which is essential for robust 
forecasting in the banking sector.

JEL codes: C45, C53, G12, G17

Keywords: machine learning models, banking failure, off-site monitoring, CSFor-
est, XGBoost 

1 INTRODUCTION

The study of bank failures is a complex and multifaceted area of research that 
plays a crucial role in maintaining the stability and growth of economies. As fi-
nancial intermediaries, banks are central to the economic framework, facilitating 
the flow of funds from savers to borrowers and ensuring liquidity in financial 
markets. However, the consequences of bank failures are profound, affecting not 
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only the institutions involved but also the broader economic system. This paper 
aims to explore the intricacies of bank failures, their impacts, and the evolution 
of predictive models used for forecasting such events.
Historically, bank failures have been a significant source of economic distress, 
with far-reaching consequences that extend beyond the immediate financial sec-
tor. The collapse of a banking institution can disrupt the flow of capital, leading 
to economic repercussions that include loss of consumer and business confidence, 
reduced spending, and in severe cases, economic recession. The 2008 financial 
crisis serves as a stark example of the systemic risks posed by failing banks and 
their global impact.
Research in predicting bank failures has evolved significantly over the years. Ear-
lier methods like linear and quadratic discriminant analysis, factor analysis, and 
logistic regression, as employed by pioneers such as Meyer and Pifer (1970), Sinkey 
(1975), and Martin (1977), were foundational in this field. These traditional models 
relied heavily on financial ratios and indicators to gauge potential risks. However, 
as financial markets became more intricate, the limitations of these models in 
their predictive capacity became apparent, necessitating the development of more 
sophisticated approaches.
Recent advancements in predictive modeling have seen the integration of artifi-
cial neural networks, operations research, hybrid intelligent methods, fuzzy logic, 
and support vector machines. For instance, Quek, Zhou, and Lee (2009) proposed 
a novel fuzzy neural network for bank failure prediction, demonstrating the use 
of computational techniques coupled with financial data reconstruction to en-
hance prediction accuracy. Similarly, Jing and Fang (2018) compared the logit 
model and data mining models in predicting U.S. bank failures, revealing the 
superior performance of data mining models in certain scenarios.
The emergence of machine learning and artificial intelligence has significantly 
enhanced the capabilities of predictive models. These advanced methods can 
analyze extensive datasets, identify complex patterns, and predict potential fail-
ures with greater precision, offering nuanced insights into the financial health of 
banking institutions. For example, Tung, Quek, and Cheng (2004) introduced 
the GenSoFNN-CRI(S) network, a neural-fuzzy based early warning system for 
predicting bank failures, highlighting its effectiveness in identifying traits of fi-
nancial distress.
The need for precise prediction and prevention of bank failures has been further 
underscored by the 2008 financial crisis. This event demonstrated the intercon-
nectedness of the global financial system, and the extensive impact of the col-
lapse of key financial institutions on the worldwide economy. It led to a surge in 
research into predictive models and risk management strategies, emphasizing the 
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ongoing need for methodological innovation to adapt to the evolving nature of 
financial risks.
In response to these developments, this paper applies boosting and random forest 
algorithms to reanalyze and predict the 2008 financial crisis, with a specific focus 
on national banks in the U.S. The significance of this research lies in its contribu-
tion to the extensive body of literature on effective models for forecasting bank 
failures. 
While the determination of the ‘best’ model may vary based on initial assump-
tions and goals, the ability to accurately forecast failed banks is essential for eco-
nomic stability and growth.
Early identification of banks potentially facing failure enables preemptive gov-
ernmental support to avert their collapse. Conversely, failing to intervene in cases 
where a bank is predicted to fail by these models increases the risk to the stabil-
ity of financial institutions significantly, as the lack of support for a potentially 
failing bank can have severe repercussions on the stability of the entire financial 
system. 

2 MOTIVATION OF THE STUDY

The core emphasis of this study lies in evaluating the efficacy of leading machine 
learning models in predicting bank failures, instead of an in-depth examination 
of the underlying causes at a micro level. This approach inherently prioritizes 
the exploration of advanced analytical techniques and their capacity to forecast 
financial instabilities over dissecting the specific factors that precipitate such 
failures.

2.1 Background of the 2008 Financial Crisis 

The 2008 Global Financial Crisis, a pivotal episode in the annals of global eco-
nomic history, was triggered by a combination of intricate financial dynamics and 
regulatory lapses. The crisis was rooted in the deterioration of the U.S. subprime 
mortgage sector beginning in the summer of 2007, a culmination of trends that 
emerged following the 2001-2002 credit crisis. This period saw an unparalleled 
expansion of credit, a sharp increase in housing prices, and a substantial build-
up of leverage within the financial system. Concurrently, rapid advancements in 
financial innovations, especially in securitization, significantly boosted the finan-
cial system’s credit creation capabilities but also surpassed its risk management 
capacity (Mian & Sufi, 2009; Shiller, 2008).
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Unlike previous credit crises in the U.S., the Global Financial Crisis (GFC) had 
profound worldwide repercussions. Losses originating from the U.S. subprime 
mortgage sector swiftly permeated the international financial ecosystem. Banks 
grappled with severe losses and liquidity constraints, leading to widespread un-
certainty about credit asset valuations and a drastic reduction in interbank lend-
ing. To counter these effects, central banks globally launched liquidity support 
mechanisms and recapitalized failing banks to rejuvenate lending (Bernanke, 
2010; Gorton, 2009).
Noteworthy events during the crisis included the nationalization of the United 
Kingdom’s Northern Rock in February 2008 as a result of the country’s first bank 
run in over a century, and the acquisition of the U.S. investment bank Bear Stearns 
by J.P. Morgan Chase in March 2008 under the guidance of the U.S. Treasury and 
the Federal Reserve (Sorkin, 2009). Additionally, the crisis brought a halt to asset-
backed commercial paper and repurchase agreement markets, resulting in the 
collapse or closure of numerous hedge funds and the dissolution of many Special 
Investment Vehicles (SIVs) and conduits, with global credit losses eventually sur-
passing USD 1 trillion (Financial Crisis Inquiry Commission, 2011).
A critical element of the crisis was the surge in housing demand and mortgage 
financing, partly driven by the low interest rate environment of the early 2000s. 
This demand fueled hikes in housing prices and attracted investors, including 
institutional ones, to the high yields of subprime mortgages. These mortgages, 
often having rates much higher than those for prime borrowers, were increasingly 
sought for securitization. In this process, securitizers pooled below-investment-
grade assets, divided cash flows based on model-driven certainty, and trans-
formed the safest cash flows into investment-grade securities (Kothari, 2008).
Many subprime mortgages were initially structured with low teaser rates, fol-
lowed by considerably higher rates in subsequent years. Borrowers, ranging from 
residents to speculators, often defaulted, especially when they were unable to 
refinance after the teaser period. The Originator-to-Distributor (OTD) model 
implied that losses on these mortgages were absorbed by investors rather than 
the originating banks, diminishing banks’ incentive for thorough due diligence 
(Acharya & Richardson, 2009).
The crisis was exacerbated by a spike in delinquencies on adjustable-rate subprime 
mortgages. By 2007, the rate of serious delinquencies had risen sharply, leading 
to numerous ratings downgrades for subprime mortgage-backed securities. Con-
tributing factors included the poor credit quality of borrowers, a significant num-
ber of first-time homebuyers making no down payments, and the prevalence of 
teaser rates (Foote, Gerardi, & Willen, 2008).
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Riskier mortgage products, such as NINJA loans and liar loans also proliferated, 
fostering fraudulent practices due to lenient lending standards. The compensa-
tion model for mortgage brokers, which prioritized loan volume over long-term 
performance, further intensified these problems (Rajan, 2010).
Banks transferred securitization assets off their balance sheets to SIVs, repackag-
ing cash flows from existing assets into tranches with varying credit ratings. This 
approach was theoretically designed to distribute risk more widely, but in reality, 
it exposed significant vulnerabilities in the financial system’s infrastructure (Ash-
craft & Schuermann, 2008).
In response, central banks around the world, notably the U.S. Federal Reserve, 
introduced innovative liquidity measures to stabilize the financial markets. These 
measures included establishing long-term lending facilities, opening the discount 
window to investment banks, and supporting commercial paper purchases. Key 
U.S. government interventions encompassed the Term Auction Facility, the Pri-
mary Dealer Credit Facility, and the Economic Stimulus Act of February 2008 
(Blinder & Zandi, 2010).
In conclusion, the 2008 Global Financial Crisis, a defining moment in modern 
economic history, is a stark reminder of the intricate interdependencies and inher-
ent vulnerabilities within the global financial system. Initiated by the downturn 
in the U.S. subprime mortgage sector and further exacerbated by a confluence of 
complex financial dynamics and regulatory shortcomings, this crisis precipitated 
widespread economic upheaval that transcended national borders. It laid bare the 
systemic risks inherent in the financial innovations of the time, such as securitiza-
tion, and a substantial build-up of leverage, which collectively outstripped the risk 
management capacities of financial institutions and regulatory bodies.
The crisis not only highlighted the flaws in financial models and practices but also 
underscored the vital importance of sound risk management, vigilant regulatory 
oversight, and the need for ethical lending and borrowing practices. It illustrated 
how rapid credit expansion, combined with a surge in housing demand fueled by 
low-interest rates, can lead to unsustainable asset price inflation and subsequent 
market corrections. The widespread impact of the crisis, from the nationalization 
of major banks to the collapse of key financial markets, demonstrated the pro-
found consequences of such systemic failures.
Ultimately, the 2007-2009 Global Financial Crisis serves as a compelling lesson 
in economic and financial governance, emphasizing the need for continuous 
vigilance, adaptability, and cooperation among various global financial entities. 
It highlights the importance of learning from past mistakes to protect financial 
systems against future crises, ensuring a more resilient and stable economic envi-
ronment for generations to come.
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2.2 Literature review

Berger and Bouwman (2012): This study extensively examines how capital affects 
bank performance across different economic conditions in the U.S. over a quarter 
of a century. Using advanced statistical methods like logit survival and OLS re-
gression models, it concludes that capital significantly enhances the survival and 
market share of small banks consistently across various economic climates. Im-
portantly, for medium-sized and large banks, capital was found to be particularly 
crucial during banking crises, indicating its vital role in bank stability during 
economic downturns.
Trussel and Johnson (2012): This research paper investigates financial indicators 
linked to U.S. bank failures using logistic regression. The study focuses on six key 
financial indicators and creates a composite measure to predict bank failure. It 
finds that an increase in Tier 1 capital relative to total assets and an increase in re-
turn on assets are the most influential factors in reducing the risk of bank failure, 
providing crucial insights into financial metrics that can predict bank stability.
Lu and Whidbee (2013): This study explores the factors affecting bank failure dur-
ing the late 2000s financial crisis, including charter type, holding company struc-
ture, and measures of bank fragility. Analyzing all commercial banks in the U.S. 
using logit regressions, the study identifies critical factors such as bailout funds, 
capital ratios, and liquidity levels that determined the survival or failure of banks 
during this turbulent period.
DeYoung and Torna (2013): This study examines the impact of income from 
nontraditional banking activities on U.S. commercial bank failures during the 
financial crisis. Using a multi-period logit model, the authors find that fee-based 
nontraditional activities like securities brokerage and insurance sales reduce the 
probability of bank failure, while asset-based activities such as venture capital 
increase it, offering insights into how different business models impact bank sta-
bility.
Chiaramonte, Liu, Poli, and Zhou (2016): The researchers assess the predictive 
power of Z-scores in forecasting bank failures between 2004 and 2012. They find 
that Z-scores, which combine profitability, leverage, and earnings variability, can 
predict 76% of bank failures and maintain stable predictive power over a three-
year period, indicating their reliability in predicting bank defaults.
Cleary and Hebb (2016): This study utilizes discriminant analysis to investigate 
the failure of 132 U.S. banks from 2002 to 2009. The authors successfully differ-
entiate between banks that failed and those that didn’t, with a high prediction 
efficiency of 92%. They extend their analysis to predict bank failures in 2010-2011, 
maintaining high prediction accuracy.
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Lu and Whidbee (2016): Examining 6,236 U.S. commercial banks during the fi-
nancial crisis, this study focuses on banks targeted for intervention via bailouts 
or failure. The authors find many similarities in the characteristics of bailed-out 
banks and those that failed, suggesting common risk factors and vulnerabilities 
that influenced their survival during the crisis.
Serrano-Cinca, Fuertes-Callén, Gutiérrez-Nieto, and Cuellar-Fernández (2014): 
This paper investigates the bankruptcy of U.S. banks since 2009, proposing sev-
eral hypotheses about the causes of failure. Using structural equation modeling, 
it concludes that failed banks had higher loan growth, a higher concentration on 
real estate loans, higher risk ratios, higher turnover, and lower margins compared 
to solvent banks, establishing a significant relationship between these factors and 
bank failures.
Le and Viviani (2017): The study conducts a comprehensive analysis of bank 
failures by combining traditional statistical techniques and advanced machine 
learning methods across a dataset of 3,000 U.S. banks. It employs Discriminant 
Analysis, Logistic Regression, Artificial Neural Networks, Support Vector Ma-
chines, and k-Nearest Neighbors, concluding that machine learning methods, 
particularly ANNs and k-NN, are more effective in predicting bank failures than 
traditional methods.
Gogas et al. (2018): Focusing on machine learning models, this study uses a data-
set of 1,443 U.S. banks, including 481 that failed during 2007-2013. The authors 
employ a two-step feature selection process and a Support Vector Machine model, 
achieving an impressive 99.22% forecasting accuracy and demonstrating the po-
tential of machine learning techniques for surpassing traditional models in pre-
dictive accuracy.
Carmona et al. (2019): This research paper applies the Extreme Gradient Boosting 
method to predict bank failures, analyzing 157 U.S. national commercial banks 
from 2001 to 2015. It assesses 30 financial ratios, revealing that specific ratios, 
particularly those relating to retained earnings and risk-based capital, are closely 
associated with increased bank failure likelihood.
Manthoulis et al. (2020): Employing both statistical and machine learning meth-
ods, this study predicts bank failures by analyzing 60,000 observations from U.S. 
banks. It highlights the effectiveness of diversification variables and the superior-
ity of ordinal classification models over binary models in predicting bank failures.
Momparler et al. (2020): Using fuzzy-set Qualitative Comparative Analysis, this 
study examines 157 U.S. national commercial banks from 2001 to 2015. It identifies 
banks with high non-performing loans and low risk coverage and capitalization 
as being at a higher risk of failure, emphasizing the importance of asset quality 
and capital adequacy.
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2.3 Study sample and ratios used in this paper

In my study, I used a meticulously constructed dataset from the Federal Deposit 
Insurance Corporation (FDIC), focusing on bank failure records. This dataset was 
essential for my binary classification analysis, which aimed to categorize banks 
into two distinct groups: those that failed and those that remained operational. 
The dataset encompassed an extensive range of 950 banking institutions, includ-
ing both main banks and their subsidiary branches. Notably, during the tumultu-
ous period of the 2008 financial crisis, 60 of these banks failed.
I chose 2009 as the reference year for selecting ‘healthy’ or non-failed banks, con-
sidering it a pivotal moment in financial history. This year represented the zenith 
of financial instability, a critical juncture where the banking sector faced its most 
severe challenges. The rationale behind this selection was that if a predictive mod-
el could accurately differentiate between failed and non-failed banks during this 
peak period of financial turbulence, then the model could be considered robust 
and effective.
For the analytical part of my study, I employed 26 CAMEL (capital adequacy, 
asset quality, management quality, earnings, and liquidity) ratios as primary vari-
ables. These ratios, fed into the predictive model, provided a total of 24,700 data 
points. The research was highly cost-effective, as the source of data was publicly 
available and open source, eliminating financial constraints related to data ac-
quisition. Moreover, data processing and analysis were conducted using WEKA, 
an established open-source software platform known for its capabilities in data 
mining. These choices were in line with my commitment to ensuring accessibility 
and reproducibility in academic research.

3 METHODOLOGY AND MODELS USED IN THE STUDY

3.1 XGBOOST

XGBoost, or eXtreme Gradient Boosting, is highly regarded in machine learn-
ing, especially for financial risk analysis and predicting banking crises. It is an 
advanced gradient boosted decision tree method, recognized for handling large 
and complex financial datasets efficiently and flexibly (Chen & Guestrin, 2016). In 
credit risk modeling and bank failure prediction, XGBoost excels in combining 
weak predictive models, primarily decision trees, into a robust predictive model. 
This is crucial in financial analysis due to the diverse range of variables, from 
individual credit histories to broad economic indicators (Friedman, 2001). An 
important strength of XGBoost is its ability to manage missing values and various 
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data types, which is vital for financial datasets often characterized by incomplete 
information (Chen & He, 2015).
 Its built-in regularization methods also prevent overfitting, a common problem 
in complex financial modeling (Natekin & Knoll, 2013). XGBoost’s feature im-
portance scores are particularly beneficial in pinpointing key factors in credit 
risk and bank failure likelihood, helping in risk management and regulatory pro-
cesses by identifying critical predictors among financial ratios, governance indi-
cators, and economic factors (Huang, Chen, & Wang, 2019). Empirical research 
demonstrates XGBoost’s superiority over traditional models like logistic regres-
sion and random forests in financial contexts. Its accuracy in detecting credit 
defaults and banking distress makes it a top choice for financial institutions and 
regulators (Malhotra & Malhotra, 2021).

3.2 Generalized Linear Model Boosting

Generalized Linear Model (GLM) Boosting, which combines GLM concepts 
with boosting algorithms, has proved effective in financial risk assessment and 
bank failure prediction. This method enhances predictive accuracy while main-
taining the interpretability of traditional GLMs, which is important in financial 
modeling. GLM Boosting excels in complex financial challenges like credit risk 
modeling, bankruptcy prediction, and bank failure detection. It adeptly handles 
diverse data types and models intricate predictor-outcome relationships, includ-
ing non-linear ones, suitable for financial applications (Hastie, Tibshirani, & 
Friedman, 2009). The method iteratively fits a GLM to data, refining the model 
by correcting previous iteration residuals. This results in a comprehensive model 
capturing complex financial data patterns that traditional linear models might 
overlook (Bühlmann & Hothorn, 2007). GLM Boosting’s regularization feature, 
controlling iterations and predictor influence, is key in preventing overfitting, 
which is crucial for models to generalize effectively to new data (Schapire & Fre-
und, 2012). Another significant aspect of GLM Boosting is its ability to perform 
variable selection. It identifies the most impactful predictors, eliminating ir-
relevant or redundant variables, thus enhancing model performance and inter-
pretability, which are vital for financial decision-making (Tutz & Binder, 2006). 
Empirical studies in finance highlight GLM Boosting’s effectiveness in various 
applications, including detailed risk factor insights and accurate adverse financial 
event predictions. This is particularly valuable for credit scoring and bank failure 
prediction, where understanding each risk factor’s influence is essential for pre-
cise decision-making (Zou & Hastie, 2005).
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3.3 LogitBoost

In the realm of machine learning for financial applications, such as credit scoring 
and customer segmentation, the integration of logistic regression into boosting al-
gorithms, particularly the approach developed by Friedman, Hastie, & Tibshirani 
(2000), has proven to be highly effective. This method excels in binary classifica-
tion tasks common in the financial sector, like distinguishing potential defaulters 
or sorting customers into different risk categories. The strength of this approach 
is its iterative refinement of logistic regression models, allowing for better naviga-
tion through complex financial data relationships, which is indispensable for pre-
cise risk assessment (Landwehr, Hall, & Frank, 2005). This aspect is particularly 
vital in finance where accuracy is key to avoiding costly mistakes. Moreover, clar-
ity in how features influence predictions make this approach highly interpretable, 
an essential quality in financial settings. Understanding the reasoning behind 
decisions such as loan approvals or rejections is important for both regulators and 
stakeholders (Hastie, Tibshirani, & Friedman, 2009). In practice, this method has 
shown considerable success in financial applications, outperforming other classi-
fiers in tasks like fraud detection and creditworthiness assessment. Its capability 
to manage complex and large datasets effectively is a significant factor in its suc-
cess (Bühlmann & Hothorn, 2007).

3.4 Random Forest

The Random Forest algorithm, developed by Breiman (2001), is a sophisticat-
ed ensemble learning method widely used in financial risk modeling and bank 
failure prediction. It combines multiple decision trees to form a ‘forest’, with 
each tree built on a random subset of data and variables. This method enhances 
predictive accuracy and robustness against overfitting, a prevalent challenge in 
financial modeling. In financial risk analysis, Random Forest excels due to its 
capability to handle large datasets with numerous variables, typical in financial 
applications. It efficiently processes various data types, including numerical and 
categorical variables, ideal for analyzing complex financial risks (Liaw & Wiener, 
2002). A key strength in finance is its feature selection ability. By averaging over 
many trees, Random Forest identifies influential predictors from a large pool of 
financial indicators, which is critical in credit scoring and bankruptcy predic-
tion for pinpointing significant risk factors (Díaz-Uriarte & De Andres, 2006). 
Random Forest’s bagging mechanism and random feature selection for each tree 
reduce variance and bias, creating a model that is accurate and generalizes well 
to new data. These characteristics are vital for predicting financial crises or bank 
failures under uncertain conditions (Cutler et al., 2007). In practice, Random 
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Forest has been more effective than traditional methods and other machine 
learning techniques in predicting credit defaults and bank distress. Its robust 
performance and ability to capture complex non-linear financial relationships 
have been demonstrated in various economic scenarios (Hastie, Tibshirani, & 
Friedman, 2009).

3.5 Regularized Random Forest

Regularized Random Forest (RRF), enhancing the traditional Random Forest 
algorithm with regularization techniques, is particularly effective in high-di-
mensional data settings like financial risk analysis and bank failure prediction. 
Developed by Deng (2013), RRF combines random forest’s robustness and feature 
selection with regularization to prevent overfitting and improve accuracy. The 
method is adept at handling numerous variables, including complex financial 
indicators, refining models by focusing on the most relevant predictors (Mein-
shausen, 2007). It addresses the ‘curse of dimensionality’ in large feature sets by 
using regularization to guide tree-building, thus reducing variance, and enhanc-
ing model generalization (Biau & Scornet, 2016). Key to RRF’s success in finance 
is its feature selection mechanism, distinguishing vital variables from less signifi-
cant ones, which is crucial for precise risk assessment and decision-making (Liaw 
& Wiener, 2002). It maintains random forest’s advantages, like handling various 
data types and providing variable importance measures, which are valuable in 
the often-incomplete datasets of finance (Breiman, 2001). Empirically, RRF has 
shown effectiveness in scenarios like credit scoring, offering more accurate pre-
dictions for credit defaults or bank distress, promoting risk management and 
regulatory compliance (Strobl et al., 2009). Overall, RRF is a significant advance-
ment in financial risk prediction owing to its effectiveness in processing high-
dimensional data with enhanced feature selection and regularization.

3.6 Cost-Sensitive Forest

Cost-Sensitive Forest is a sophisticated adaptation of ensemble learning tech-
niques like Random Forest, tailored for financial risk assessment and bank failure 
prediction where prediction errors have asymmetric costs. Developed by Elkan 
(2001), it enhances traditional models by accounting for the different costs of false 
positives and false negatives in its training process, making it more aligned with 
real-world financial decision-making (Ling & Sheng, 2008).
This model is particularly valuable in finance, where the cost of missing a bank 
failure (false negative) can be much higher than incorrectly predicting one (false 
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positive). Cost-Sensitive Forests focus on minimizing more costly errors, provid-
ing a nuanced tool for regulatory and economic analysis (Turney, 2000).
Its adaptability to changing cost scenarios in evolving financial markets is a key 
advantage, allowing recalibration to maintain relevance under different econom-
ic conditions (Zadrozny & Elkan, 2001). Empirical studies have shown that Cost-
Sensitive Forests offer improved prediction accuracy over traditional models, aid-
ing financial institutions and regulators in developing effective risk management 
strategies (Khalilia, Chakraborty, & Popescu, 2011).

3.7 Machine Learning

Machine learning encompasses a range of computational methods that enable 
systems to learn from data and make decisions or predictions. At its core, ma-
chine learning involves algorithms that can process large datasets, recognize pat-
terns, and make predictions or decisions based on data inputs without being ex-
plicitly programmed for specific tasks (Alpaydin, 2020). The methods are broadly 
classified into supervised learning, unsupervised learning, and reinforcement 
learning, each suited to different types of problems and data structures (Goodfel-
low, Bengio, & Courville, 2016).

3.8 Machine Learning Performance Metrics

Accuracy
Accuracy is the simplest and most intuitive performance metric. It is the ratio of 
correctly predicted instances to the total instances in the dataset. While easy to 
understand, accuracy can be misleading, especially in imbalanced datasets where 
one class significantly outnumbers the other (Provost et al., 1998).

Precision (Positive Predictive Value)
Precision measures the proportion of positive identifications that were actually 
correct. It is particularly important in scenarios where false positives are more 
consequential. High precision indicates a low rate of false positives (Powers, 2011).

Recall (Sensitivity, True Positive Rate)
Recall measures the proportion of actual positives that were correctly identified. 
It is crucial in contexts where missing out on positive instances (false negatives) 
is costly. High recall means that most of the positive instances are correctly cap-
tured (Powers, 2011).
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Precision-Recall Curve
The precision-recall curve (PRC) illustrates precision values in relation to sensi-
tivity (recall) values. Just as the ROC curve, the PRC curve offers a comprehensive 
assessment of a model’s performance across the board. The AUC score associated 
with the PRC curve, referred to as AUC (PRC), is also a valuable metric for com-
paring multiple classifiers. According to the study of Saito and Rehmsmeier (2015), 
the precision-recall plot is more informative than the ROC plot when evaluating 
binary classifiers on imbalanced datasets. Hence, I used PRC in my study as well.

Confusion Matrix
A confusion matrix is a table used to describe the performance of a classification 
model. It shows true positives, false positives, true negatives, and false negatives. 
This matrix provides a clear view of the performance of the model and is espe-
cially useful in multi-class classification problems (Stehman, 1997).

K-Fold Cross Validation
The research methodology adopted in this study closely follows the approach of 
Carmona et al. (2019), specifically employing a 10-fold cross-validation technique. 
This method is a cornerstone in statistical analysis, especially in validating mod-
els in fields like machine learning and data science. The 10-fold cross-validation 
process begins with the division of the entire dataset into ten equally sized seg-
ments, or ‘folds.’ Division is crucial for ensuring that each segment of the data 
receives equal representation during the validation process, thereby reducing bias 
and improving the reliability of model evaluation. In each of the ten iterations of 
the process, one of these folds is designated as the test set, while the remaining 
nine folds are combined to form the training set. Rotation is methodical, i.e., each 
fold serves as the test set exactly once, ensuring that every data point is used for 
both training and testing at different stages. Systematic rotation is a key strength 
of this method, as it allows for a more robust and thorough evaluation of the 
model’s performance. By employing this technique, the model is exposed to a 
wide variety of data scenarios. The variation in training and test sets across itera-
tions enables the model to demonstrate its ability to learn and generalize from 
different subsets of the data. This is particularly valuable in assessing the model’s 
performance in real-world scenarios, where data can vary significantly.
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3.8.1 Result of the Boosting Algorithms

GLMBoost

Metric Value Percentage  

Correctly Classified Instances 915 96.32%  
Incorrectly Classified Instances 35 3.68%  
Class Precision Recall PRC Area
Non-Failed 0.97 0.991 0.989
Failed 0.805 0.55 0.777

Confusion Matrix Non-Failed 
Predicted

Failed  
Predicted  

Non-Failed Actual 882 8  
Failed Actual 27 33  

XGBoost

Metric Value Percentage  

Correctly Classified Instances 918 96.63%  
Incorrectly Classified Instances 32 3.37%  
Class Precision Recall PRC Area
Non-Failed 0.981 0.983 0.990
Failed 0.741 0.717 0.703

Confusion Matrix Non-Failed 
Predicted

Failed  
Predicted  

Non-Failed Actual 878 12  
Failed Actual 23 37  

LogitBoost

Metric Value Percentage  

Correctly Classified Instances 915 96.32%  
Incorrectly Classified Instances 35 3.68%  
Class Precision Recall PRC Area
Non-Failed 0.974 0.987 0.998
Failed 0.755 0.617 0.782

Confusion Matrix Non-Failed 
Predicted

Failed  
Predicted  

Non-Failed Actual 875 15  
Failed Actual 17 43  
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3.8.2 Result of the Random Forest Algorithms

General Random Forest

Metric Value Percentage  

Correctly Classified Instances 925 97.37%  
Incorrectly Classified Instances 25 2.63%  
Class Precision Recall PRC Area
Non-Failed 0.982 0.99 0.989
Failed 0.83 0.733 0.824

Confusion Matrix Non-Failed 
Predicted

Failed  
Predicted  

Non-Failed Actual 881 9  
Failed Actual 16 44  

Cost Sensitive Random Forest

Metric Value Percentage  

Correctly Classified Instances 925 97.37%  
Incorrectly Classified Instances 25 2.63%  
Class Precision Recall PRC Area
Non-Failed 0.984 0.988 0.999
Failed 0.807 0.767 0.760

Confusion Matrix Non-Failed 
Predicted

Failed  
Predicted  

Non-Failed Actual 879 11  
Failed Actual 14 46  

Regularized Random Forest

Metric Value Percentage  

Correctly Classified Instances 925 97.47%  
Incorrectly Classified Instances 25 2.53%  
Class Precision Recall PRC Area
Non-Failed 0.988 0.985 0.997
Failed 0.79 0.817 0.755

Confusion Matrix Non-Failed 
Predicted

Failed  
Predicted  

Non-Failed Actual 877 13  
Failed Actual 11 49  
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3.8.3 Comparison of Results
Performance Evaluation of Machine Learning Algorithms on Non-Failed 
Bank Predictions

Algorithm Metric Value Percentage Class Precision PRC  
Area

Regularized 
Random Forest

Correctly 
Classified 
Instances

925 97% Non-
Failed 0.988 0.997

Cost Sensitive 
Random Forest

Correctly 
Classified 
Instances

925 97% Non-
Failed 0.984 0.999

General 
Random Forest

Correctly 
Classified 
Instances

925 97% Non-
Failed 0.982 0.999

XGBoost
Correctly 
Classified 
Instances

918 97% Non-
Failed 0.981 0.999

LogitBoost
Correctly 
Classified 
Instances

915 96% Non-
Failed 0.974 0.998

GLMBoost
Correctly 
Classified 
Instances

915 96% Non-
Failed 0.97 0.989

In an in-depth analysis of algorithm performance for classifying non-failed 
banks, the results indicate a marginal superiority of Random Forest variations 
over Boosting methods. Specifically, the Regularized Random Forest, Cost Sensi-
tive Random Forest, and General Random Forest algorithms all exhibit an im-
pressive 97% rate of Correctly Classified Instances, suggesting a solid ability to 
discriminate between failing and stable banks. The Boosting methods, GLMBoost 
and LogitBoost, are slightly less effective, but still demonstrate a commendable 
performance with a 96% accuracy rate.
Focusing on precision, which is critical in ensuring that banks classified as stable 
are indeed stable, Regularized Random Forest leads with a precision rate of 0.988 
for the non-failed class. This high precision indicates a lower likelihood of false 
positives, which is indispensable for avoiding misclassification of at-risk banks 
as stable. The Cost Sensitive and General Random Forest algorithms also per-
form well, indicating that the Random Forest framework is consistently reliable 
in identifying non-fail instances. The Boosting methods, particularly GLMBoost, 
show a somewhat reduced precision, which may imply a higher rate of false posi-
tives among non-fail predictions.
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The Precision-Recall Curve (PRC) Area serves as a comprehensive metric that 
encapsulates both the precision of the model and its recall, or sensitivity. 
A higher PRC Area is indicative of a model’s effectiveness in maintaining high 
precision while also capturing a large proportion of actual positive instances 
(non-failed banks, in this context). The Random Forest variations stand out with 
the highest PRC Areas, implying that these models offer the best balance in cor-
rectly predicting non-failed banks while minimizing both false positives and 
false negatives. The Boosting methods have slightly lower PRC Areas, but they 
still perform reliably.
In summary, Random Forest variants outperform Boosting methods in classify-
ing non-failed banks, with a higher precision and better balance between preci-
sion and recall. Regularized Random Forest is particularly notable for its preci-
sion, while General and Cost Sensitive Random Forest models provide the best 
compromise between avoiding false positives and negatives. Boosting methods, 
despite being slightly outperformed, could still be useful, especially with param-
eter tuning, and GLMBoost may be preferred for its interpretability. The choice of 
model should be aligned with the specific needs and risk profile of the application.

Performance Evaluation of Machine Learning Algorithms  
on Failed Bank Predictions

Algorithm Metric Value Percentage Osztály Class PRC  
Area

Regularized 
Random Forest

Incorrectly 
Classified 
Instances

25 3% Failed 0.817 0.755

Cost Sensitive 
Random Forest

Incorrectly 
Classified 
Instances

25 3% Failed 0.767 0.76

General 
Random Forest

Incorrectly 
Classified 
Instances

25 3% Failed 0.733 0.824

XGBoost
Incorrectly 
Classified 
Instances

32 3% Failed 0.717 0.703

LogitBoost
Incorrectly 
Classified 
Instances

35 4% Failed 0.617 0.782

GLMBoost
Incorrectly 
Classified 
Instances

35 4% Failed 0.55 0.777
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In a detailed evaluation of algorithms for predicting bank failures, all models 
exhibit high accuracy, with a low percentage of incorrectly classified instances 
between 3% and 4%. This consistent performance across algorithms demonstrates 
their effectiveness in identifying potential bank failures.
When examining recall, which is critical for correctly detecting failed banks, 
Regularized Random Forest stands out with the highest recall of 0.817, indicating 
that it is the most effective in identifying true failures. Cost Sensitive Random 
Forest and General Random Forest follow closely, with slightly lower recall values 
of 0.767 and 0.733, respectively. XGBoost, LogitBoost, and GLMBoost show lower 
recall, implying a greater likelihood of incorrectly classifying failing banks as 
stable.
The Precision-Recall Curve (PRC) Area, a key metric in determining the balance 
between precision and recall, reveals further insights. General Random Forest 
ranks first with the highest PRC Area of 0.824, suggesting an optimal balance in 
predicting bank failures. Regularized and Cost Sensitive Random Forest models 
also demonstrate a robust performance, with PRC Areas of 0.755 and 0.76, respec-
tively, indicating their effectiveness in maintaining the balance. XGBoost and 
GLMBoost models have similar PRC Areas, while LogitBoost occupies a middle 
ground.
Overall, this analysis highlights the strengths of Random Forest variations in ac-
curately identifying bank failures, with General Random Forest offering the best 
balance between precision and recall. While Boosting methods are slightly less ef-
fective in terms of recall, their performance remains robust, making them viable 
options depending on the specific requirements and contexts of their application.
In summary, the Regularized Random Forest model excels in sensitivity to failing 
banks, making it less likely to miss identifying a bank at risk of failure. Its high 
recall makes it particularly useful in situations where the cost of missing a fail-
ing bank is substantial. The General Random Forest algorithm stands out for its 
optimal balance between precision and recall, also indicated by its highest PRC 
Area, making it adept at identifying failing banks while minimizing false alarms. 
Boosting methods such as GLMBoost and LogitBoost, while showing a lower re-
call and PRC Area, could still be relevant in certain scenarios, particularly if fine-
tuned. The choice of the most suitable model should take the specific implications 
of false negatives and false positives into account, with a preference for models 
like Regularized and General Random Forest in such high-stakes environments 
as banking where accurately detecting bank failures is of crucial importance.
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4 CONCLUSION

In the realm of financial stability, banks play a crucial role as intermediaries in 
economic systems, making the study of bank failures a topic of paramount im-
portance in the financial literature. The ability to understand and predict bank 
failures is essential not only for enhancing regulatory and supervisory capabili-
ties but also for mitigating the economic impact associated with these failures. 
This understanding aids in crafting effective strategies and policies aimed at pre-
venting future collapses, thereby preserving both the banking system and broad-
er economic stability.
Historically, there has been significant evolution along the academic journey into 
understanding bank failures, from traditional statistical methods to more so-
phisticated machine learning and artificial intelligence-based approaches. Early 
research focused on discriminant analysis and logistic regression methods, but 
with the growing complexity of financial markets, these models faced limitations 
in predictive accuracy. The shift to advanced computational techniques, including 
artificial neural networks and support vector machines, marked a pivotal change. 
These methods offered a nuanced analysis of complex financial data, enhancing 
the predictive capabilities of models in identifying potential bank failures.
In evaluating the performance of various machine learning algorithms in pre-
dicting Non-Failed and Failed banks, a comprehensive analysis reveals distinct 
strengths across different models. For non-failed bank predictions, Random For-
est variants, particularly Regularized, Cost Sensitive, and General Random For-
est, demonstrated a marginal superiority over Boosting methods. These models 
showed a higher rate of correctly classified instances, better precision, and a bal-
anced trade-off between precision and recall. They were particularly effective in 
minimizing false positives and ensuring that banks classified as stable were in-
deed stable.
On the other hand, in predicting Failed banks, all models displayed high accura-
cy with low percentages of incorrectly classified instances. However, Regularized 
Random Forest stood out for its high recall, making it particularly sensitive in 
identifying failing banks and less likely to miss a bank at risk of failure. General 
Random Forest provided the best balance between precision and recall, as indi-
cated by its highest PRC Area. Although Boosting methods like GLMBoost and 
LogitBoost showed a lower recall and PRC Area, they remained viable options, 
particularly in scenarios where specific strengths such as model interpretability 
were required.
The evolution from traditional models to advanced machine learning approaches 
reflects the increasing intricacy of financial markets and the need for sophisti-
cated analytical tools. Moreover, the 2008 financial crisis underscored the critical 
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need for accurate prediction and prevention of bank failures, highlighting the 
interconnectedness of the global financial system and the far-reaching impacts of 
the failure of financial institutions.
In conclusion, the choice of the most suitable model for predicting bank stabil-
ity should be aligned with the specific needs and risk profiles of the application. 
Factors such as the cost of false negatives versus false positives, the requirement 
for model interpretability, and the specific nature of the banking data should 
guide this selection. In the high-stakes world of banking, where accuracy and 
reliability are paramount, models offering the best balance between sensitivity to 
failures and precision, such as Regularized and General Random Forest, might 
be preferable. However, boosting methods could be advantageous in contexts 
where their specific strengths align with the operational requirements of the task 
at hand. Continuous innovation in methodologies remains essential to keep pace 
with the evolving nature of financial risks and the complexities of modern finan-
cial systems.

4.1 Limitations of the study

There is an important inherent limitation of relying solely on CAMEL ratios for 
forecasting bank failures and mitigating banking risks, especially when consider-
ing the complex nature of financial institutions and the dynamic environments 
in which they operate. This limitation primarily arises from the fact that CAMEL 
ratios are quantitative measures that may not fully capture or reflect the nuances 
of behavioral finance and managerial decision-making, which can significantly 
impact a bank’s risk profile and its propensity for failure.
In essence, while CAMEL ratios serve as a valuable tool for regulatory bodies 
and financial analysts to assess the financial health and stability of banks, they 
cannot encapsulate the entirety of risks associated with behavioral finance and 
managerial decision-making. The limitation of the study, therefore, lies in its 
dependency on these ratios without integrating the qualitative aspects of bank-
ing operations and human behaviors. This reliance can lead to an incomplete 
risk assessment and potentially overlook emerging threats that stem from non-
quantitative factors.
To address this limitation, future research could explore the possibilities of inte-
grating behavioral finance metrics and qualitative assessments of management 
quality and governance practices into the existing framework. This could involve 
developing new models that combine quantitative financial health indicators 
with qualitative evaluations of managerial decision-making, ethical considera-
tions, and corporate governance structures. By acknowledging and attempting 
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to incorporate these complex and nuanced factors, researchers and practitioners 
can develop more holistic and effective strategies for predicting bank failures and 
implementing mitigation strategies.

APPENDIX A

The Financial Ratios Used in the Study (CAMEL Ratios)

1. Yield on Earning Assets
2.  Cost of Funding Earning Assets
3. Net Interest Margin
4. Noninterest Income to Average Assets
5. Noninterest Expense to Average Assets
6. Credit Loss Provision to Assets
7. Net Operating Income to Assets
8.  Return on Assets
9. Retained Earnings to Average Equity (YTD only)
10. Net Charge-Offs to Loans and Leases
11. Earnings Coverage of Net Loan Charge-Offs(x)
12. Efficiency Ratio
13. Assets Per Employee ($Millions)
14. Earning Assets to total Assets
15. Loss Allowance to Loans and Leases
16. Loss Allowance to Noncurrent Loans and Leases
17. Noncurrent Loans to Loans
18. Net Loans and Leases to Assets
19. Net Loans and Leases to Core Deposits
20. Domestic Deposits to Total Assets
21. Equity Capital to Assets
22. Total Risk-Based Capital Ratio
23. Average Total Assets
24. Average Earning Assets
25. Average Equity
26. Average Total Loans
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